1 上下标
| 算式 | Markdown |
|---|---|
| \(x^2\) | $$x^2$$ |
| \(x_2\) | $$x_2$$ |
| \(x^{2+3}\) | $$x^{2+3}$$ |
| \(x_{2+3}\) | $$x_{2+3}$$ |
| \(x^{2+3}_{2+3}\) | $$x^{2+3}_{2+3}$$ |
| \(x^{[0]}\) | $$x^{[0]}$$ |
2 求和
| 算式 | Markdown |
|---|---|
| \(\sum_{i=1}^{n}i\) | $$\sum_{i=1}^{n}i$$ |
| \(\sum_{i=1}^{n}i^2\) | $$\sum_{i=1}^{n}i^2$$ |
| \(\sum_{i=1}^{n}i^2+1\) | $$\sum_{i=1}^{n}i^2+1$$ |
| \(\sum_{i=1}^{n}(i^2+1)\) | $$\sum_{i=1}^{n}(i^2+1)$$ |
| \(\sum_{i=1}^{n}\left(i^2+1\right)\) | $$\sum_{i=1}^{n}\left(i^2+1\right)$$ |
| \(\sum_{i=1}^{n}\left(i^2+1\right)^2\) | $$\sum_{i=1}^{n}\left(i^2+1\right)^2$$ |
| \(\sum_{i=1}^{n}\left(i^2+1\right)^2+1\) | $$\sum_{i=1}^{n}\left(i^2+1\right)^2+1$$ |
| \(\sum_{i=1}^{n}\left(i^2+1\right)^2+1\) | $$\sum_{i=1}^{n}\left(i^2+1\right)^2+1$$ |
3 积分
| 算式 | Markdown |
|---|---|
| \(\int_{a}^{b}f(x)dx\) | $$\int_{a}^{b}f(x)dx$$ |
| \(\int_{a}^{b}f(x)dx+1\) | $$\int_{a}^{b}f(x)dx+1$$ |
| \(\int_{a}^{b}\left(f(x)+1\right)dx\) | $$\int_{a}^{b}\left(f(x)+1\right)dx$$ |
| \(\int_{a}^{b}\left(f(x)+1\right)^2dx\) | $$\int_{a}^{b}\left(f(x)+1\right)^2dx$$ |
| \(\int_{a}^{b}\left(f(x)+1\right)^2dx+1\) | $$\int_{a}^{b}\left(f(x)+1\right)^2dx+1$$ |
4 分数
| 算式 | Markdown |
|---|---|
| \(\frac{1}{2}\) | $$\frac{1}{2}$$ |
| \(\frac{1}{2}+1\) | $$\frac{1}{2}+1$$ |
| \(\frac{1}{2}+1\) | $$\frac{1}{2}+1$$ |
| \(\frac{1}{2}+1\) | $$\frac{1}{2}+1$$ |
| \(\frac{1}{2}+1\) | $$\frac{1}{2}+1$$ |
| \(\frac{1-x}{y+1}\) | $$\ frac{1-x}{y+1}$$ |
| \(\frac{1-x}{y+1}+1\) | $$\frac{1-x}{y+1}+1$$ |
5 根号(开方)
| 算式 | Markdown |
|---|---|
| \(\sqrt{2}\) | $$\sqrt{2}$$ |
| \(\sqrt{2}+1\) | $$\sqrt{2}+1$$ |
| \(\sqrt{3}+1\) | $$\sqrt{3}+1$$ |
6 矩阵
| 算式 | Markdown |
|---|---|
| \(\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}\) | $$\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}$$ |
| \(\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}+1\) | $$\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}+1$$ |
7 括号
| 算式 | Markdown |
|---|---|
| \((1+2)\) | $$(1+2)$$ |
| \((1+2)+1\) | $$(1+2)+1$$ |
| \(f(x, y) = x^2 + y^2\) | $$f(x, y) = x^2 + y^2$$ |
| \(x \epsilon [0, 100]\) | $$x \epsilon [0, 100]$$ |
| \(y \epsilon \{1,2,3\}\) | $$y \epsilon \{1,2,3\}$$ |
| \(\left(\sqrt{1 \over 2}\right)^2\) | $$\left(\sqrt{1 \over 2}\right)^2$$ |
| \(y :\begin{cases} x+y=1\\ x-y = 0 \end{cases}\) | $$y :\begin{cases} x+y=1\\ x-y = 0 \end{cases}$$ |
8 箭头
| 算式 | Markdown |
|---|---|
| \(x \rightarrow y\) | $$x \rightarrow y$$ |
| \(x \leftarrow y\) | $$x \leftarrow y$$ |
| \(x \Rightarrow y\) | $$x \Rightarrow y$$ |
| \(x \Leftarrow y\) | $$x \Leftarrow y$$ |
| \(x \leftrightarrow y\) | $$x \leftrightarrow y$$ |
| \(x \Leftrightarrow y\) | $$x \Leftrightarrow y$$ |
9 向量
| 算式 | Markdown |
|---|---|
| \(\vec{a}\) | $$\vec{a}$$ |
| \(\vec{a}+1\) | $$\vec{a}+1$$ |
| \(\vec{a}+\vec{b}\) | $$\vec{a}+\vec{b}$$ |
| \(\vec{a}+\vec{b}+1\) | $$\vec{a}+\vec{b}+1$$ |
| \(\vec{a}+\vec{b}+\vec{c}\) | $$\vec{a}+\vec{b}+\vec{c}$$ |
10 算符
| 算式 | Markdown |
|---|---|
| \(x \times y\) | $$x \times y$$ |
| \(x \div y\) | $$x \div y$$ |
| \(x \pm y\) | $$x \pm y$$ |
| \(x \mp y\) | $$x \mp y$$ |
| \(x \cdot y\) | $$x \cdot y$$ |
| \(x \ast y\) | $$x \ast y$$ |
| \(x \star y\) | $$x \star y$$ |
| \(x \circ y\) | $$x \circ y$$ |
| \(x \bullet y\) | $$x \bullet y$$ |
| \(x \oplus y\) | $$x \oplus y$$ |
| \(x \ominus y\) | $$x \ominus y$$ |
| \(x \otimes y\) | $$x \otimes y$$ |
| \(x \oslash y\) | $$x \oslash y$$ |
| \(x \odot y\) | $$x \odot y$$ |
| \(x \bigodot y\) | $$x \bigodot y$$ |
| \(x \bigotimes y\) | $$x \bigotimes y$$ |
| \(x \bigoplus y\) | $$x \bigoplus y$$ |
| \(x \bigcup y\) | $$x \bigcup y$$ |
| \(x \bigcap y\) | $$x \bigcap y$$ |
| \(x \bigvee y\) | $$x \bigvee y$$ |
| \(x \bigwedge y\) | $$x \bigwedge y$$ |
11 逻辑运算符
| 算式 | Markdown |
|---|---|
| \(x \land y\) | $$x \land y$$ |
| \(x \lor y\) | $$x \lor y$$ |
| \(x \lnot y\) | $$x \lnot y$$ |
| \(x \forall y\) | $$x \forall y$$ |
| \(x \exists y\) | $$x \exists y$$ |
| \(x \top y\) | $$x \top y$$ |
| \(x \bot y\) | $$x \bot y$$ |
| \(x \vdash y\) | $$x \vdash y$$ |
| \(x \models y\) | $$x \models y$$ |
| \(x \vDash y\) | $$x \vDash y$$ |
12 比较运算符
| 算式 | Markdown |
|---|---|
| \(x \leq y\) | $$x \leq y$$ |
| \(x \geq y\) | $$x \geq y$$ |
| \(x \neq y\) | $$x \neq y$$ |
| \(x \approx y\) | $$x \approx y$$ |
| \(x \equiv y\) | $$x \equiv y$$ |
| \(x \sim y\) | $$x \sim y$$ |
| \(x \simeq y\) | $$x \simeq y$$ |
| \(x \propto y\) | $$x \propto y$$ |
| \(x \doteq y\) | $$x \doteq y$$ |
| \(x \asymp y\) | $$x \asymp y$$ |
| \(x \ll y\) | $$x \ll y$$ |
| \(x \gg y\) | $$x \gg y$$ |
| \(x \prec y\) | $$x \prec y$$ |
| \(x \succ y\) | $$x \succ y$$ |
| \(x \subset y\) | $$x \subset y$$ |
| \(x \supset y\) | $$x \supset y$$ |
| \(x \subseteq y\) | $$x \subseteq y$$ |
13 集合运算符
| 算式 | Markdown |
|---|---|
| \(x \cup y\) | $$x \cup y$$ |
| \(x \cap y\) | $$x \cap y$$ |
| \(x \setminus y\) | $$x \setminus y$$ |
| \(x \in y\) | $$x \in y$$ |
| \(x \notin y\) | $$x \notin y$$ |
| \(x \ni y\) | $$x \ni y$$ |
| \(x \notni y\) | $$x \notni y$$ |
| \(x \subset y\) | $$x \subset y$$ |
14 累乘
| 算式 | Markdown |
|---|---|
| \(\prod_{i=1}^n\) | $$\prod_{i=1}^n$$ |
| \(\prod_{i=1}^n x_i\) | $$\prod_{i=1}^n x_i$$ |
| \(\prod_{i=1}^n x_i^2\) | $$\prod_{i=1}^n x_i^2$$ |
15 省略号
| 算式 | Markdown |
|---|---|
| \(x_1, x_2, \dots, x_n\) | $$x_1, x_2, \dots, x_n$$ |
16 三角函数
| 算式 | Markdown |
|---|---|
| \(\sin x\) | $$\sin x$$ |
| \(\cos x\) | $$\cos x$$ |
| \(\tan x\) | $$\tan x$$ |
| \(\cot x\) | $$\cot x$$ |
| \(\sec x\) | $$\sec x$$ |
| \(\csc x\) | $$\csc x$$ |
| \(\arcsin x\) | $$\arcsin x$$ |
| \(\arccos x\) | $$\arccos x$$ |
| \(\arctan x\) | $$\arctan x$$ |
| \(\sinh x\) | $$\sinh x$$ |
| \(\cosh x\) | $$\cosh x$$ |
| \(\tanh x\) | $$\tanh x$$ |
| \(\coth x\) | $$\coth x$$ |
| \(\bot\) | $$\bot$$ |
| \(\angle\) | $$\angle$$ |
| \(30^\circ\) | $$30^\circ$$ |
17 定积分
| 算式 | Markdown |
|---|---|
| \(\infty\) | $$\infty$$ |
| \(y\prime\) | $$y\prime$$ |
| \(y\prime\prime\) | $$y\prime\prime$$ |
| \(\oint\) | $$\oint$$ |
18 对数
| 算式 | Markdown |
|---|---|
| \(\log x\) | $$\log x$$ |
| \(\lg x\) | $$\lg x$$ |
| \(\ln x\) | $$\ln x$$ |
19 极限
| 算式 | Markdown |
|---|---|
| \(\lim_{x \to \infty}\) | $$\lim_{x \to \infty}$$ |
| \(\lim_{x \to 0}\) | $$\lim_{x \to 0}$$ |
| \(\lim_{x \to 0^+}\) | $$\lim_{x \to 0^+}$$ |
| \(\lim_{x \to 0^-}\) | $$\lim_{x \to 0^-}$$ |
20 希腊字母
| 算式 | Markdown |
|---|---|
| \(\alpha\) | $$\alpha$$ |
| \(\beta\) | $$\beta$$ |
| \(\gamma\) | $$\gamma$$ |
| \(\delta\) | $$\delta$$ |
| \(\epsilon\) | $$\epsilon$$ |
| \(\varepsilon\) | $$\varepsilon$$ |
| \(\zeta\) | $$\zeta$$ |
| \(\eta\) | $$\eta$$ |
| \(\theta\) | $$\theta$$ |
| \(\vartheta\) | $$\vartheta$$ |
| \(\iota\) | $$\iota$$ |
| \(\kappa\) | $$\kappa$$ |
| \(\lambda\) | $$\lambda$$ |
| \(\mu\) | $$\mu$$ |
| \(\nu\) | $$\nu$$ |
| \(\xi\) | $$\xi$$ |
| \(\pi\) | $$\pi$$ |
| \(\varpi\) | $$\varpi$$ |
| \(\rho\) | $$\rho$$ |
| \(\varrho\) | $$\varrho$$ |
| \(\sigma\) | $$\sigma$$ |
| \(\varsigma\) | $$\varsigma$$ |
| \(\tau\) | $$\tau$$ |
| \(\upsilon\) | $$\upsilon$$ |
| \(\phi\) | $$\phi$$ |
| \(\varphi\) | $$\varphi$$ |
| \(\chi\) | $$\chi$$ |
| \(\psi\) | $$\psi$$ |
| \(\omega\) | $$\omega$$ |
| \(\Gamma\) | $$\Gamma$$ |
| \(\Delta\) | $$\Delta$$ |
| \(\Theta\) | $$\Theta$$ |
| \(\Lambda\) | $$\Lambda$$ |
| \(\Xi\) | $$\Xi$$ |
| \(\Pi\) | $$\Pi$$ |
| \(\Sigma\) | $$\Sigma$$ |
| \(\Upsilon\) | $$\Upsilon$$ |
| \(\Phi\) | $$\Phi$$ |
| \(\Psi\) | $$\Psi$$ |
文档信息
- 本文作者:王翊仰
- 本文链接:https://www.wangyiyang.cc/2023/07/29/mathematical-formulas-in-markdown/
- 版权声明:自由转载-非商用-非衍生-保持署名(创意共享3.0许可证)